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Kﬂstract

The use of semi-infinite bi-element targets in depth of penetration (DOP) tests initially arose
from the need to rank performance of ceramic materials under ballistic impact. However, since
ceramics exhibit complex damage responses, interpretation of DOP results for ceramic/metal
target combinations can be difficult and sometimes misleading. Thus, recent work utilized
bi-element metal/metal targets to determine additional mechanisms present in the earlier DOP
ceramic/metal target responses. This demonstrated that significant target interactions are present
in either combination in addition to specific damage mechanisms inherent in the ceramic
response. The target interactions considered before included shock-induced transient effects at
the front target surface and shock wave reflections at the target/target interface. In current work,
which considers low-density/low-strength target materials, it has been found that rigid-body
penetration is present and needs to be taken into account also. This report investigates rigid-body
penetration. The work explores the previously cited mechanisms through experimental work and
includes a model to explain results.
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1. Introduction

The use of semi-infinite bi-element targets of ceramic/metal in depth of penetration (DOP)
testing arose from the need to rank ceramic materials. Performance is measured by the DOP of a
long-rod penetrator into a semi-infinite steel back plate after passing through a ceramic applique.
The penetrator velocity is held constant while the areal density/thickness of the ceramic is varied
over a wide range of values. The DOP vs. applique thickness experiments generate performance

maps that provide a means to compare performance of various ceramics in armor designs.

The DOP test method has gained acceptance as a valuable tool for comparative testing and
ranking of ceramics. However, previous experimental and analytical work has indicated that
such results can be difficult to interpret and sometimes misleading. For example, prior work
(Rupert and Grace 1993; Grace and Rupert 1993) has identified a dynamic target interaction
effect that can alter perceived performance in a manner similar to the known damage
mechanisms that occur in ceramics subject to ballistic impact. The interactions include the shock
transient associated with penetrator impact on the target front surface and shock wave reflections
at target interfaces. In the previous analysis that considers titanium (Ti), as a surrogate for
ceramics, and rolled homogeneous armor (RHA) steel, the shock effects were referred to as a
"density effect mechanism" for both metallic and ceramic appliques. The current work considers
low-density/lower strength target materials of Ti alloy, as a surrogate for ceramic appliques, and
aluminum (Al) second element. The experiments show that rigid-body penetration was present
and needed to be taken into account. As with the density effect, the appearance of rigid-body
penetration can alter perceived target performance substantially. This report investigates the

effects of rigid-body penetration.

2. Materials

2.1 Ti. Since the introduction of Ti and Ti alloys in the early 1950s, these materials have in

a relatively short time become the backbone materials for the aerospace, energy, and chemical




industries (Bomberger, Froes, and Morton 1985). The combination of a high strength-to-weight
ratio, excellent mechanical properties (i.e., strength vs. temperature), and corrosion resistance
makes Ti the best material for many critical applications. However, the traditional high cost of
Ti alloys has limited their use to applications for which lower cost materials, such as Al and

steel, could not be used.

Ti-6A1-4V alloy dominates structural casting applications. This alloy similarly has
dominated wrought industry products since its introduction in the early 1950s, becoming the
benchmark alloy against which others are compared (Eylon, Nekmlan, and Thorne 1990). With
the recent reduction in the cost of Ti alloys, a renewed interest in using Ti as an armor material is
taking place. Property data measured from armor plates used in the recent evaluation of low-cost

Ti-6A1-4V plates are listed in Table 1.

Table 1. Computational Material Properties

DU Alloy Ti 6A1-4V 7039 Al __I
Density (p) 18.6 g/cm? 4.45 g/cm® 2.73 g/em®
Nominal Strength (S) 1.38 GPa 0.91 GPa 0.45 GPa
Yield Strength (Y ) NU 0.86 GPa 0.48 GPa*
Young's Modulus (E) NU 113.8 GPa 75 GPa*
Plastic Modulus (E,) NU 1.9 GPa 0.55 GPa*
Sound Velocity NU 6,070 m/s 5,240 m/s

® Zook, Frank, and Silsby 1992.
NU - Not Used

2.2 Al Interest in Al alloy armor evolved early in World War II from the testing of 2024-T6
and 7075-T6 Al plates (Mascianica 1979). The two alloys showed good fragmentation protection
against high-explosive shells and, in some cases, against armor-piercing ammunition. Later, the
Al industry cooperated with the Army in developing 7039 Al to military specification
MIL-A-46063 (Materials Directorate 1992). This alloy demonstrated improved protection
against kinetic energy ammunition. Since then, 7039 Al has become the standard Al armor for

the Army. Property data measured from random plates used at the U.S. Army Research
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Laboratory (ARL) (formerly the Ballistic Research Laboratory [BRL]) over the past 10 yr are
also listed in Table 1.

3. DOP Testing

DOP testing was developed as a means of ranking ceramic materials for ballistic applications
(Woolsey, Mariano, and Kokidko 1989; Alme and Bless 1989a, 1989b; Bless, Rosenberger, and
Yoon 1987; Woolsey, Mariano, and Kokidko 1990; Frank 1981). Performance is measured by
the DOP of a long-rod penetrator into a semi-infinite steel back plate after passing through a
ceramic applique. Ceramic performance comparisons are then made between selected baseline

materials. We have extended this type of testing to include bi-element metallic targets.

3.1 Projectiles. The projectile used in this study was the 65-g, U-0.75% Ti, long-rod
penetrator manufactured by Nuclear Metals, Incorporated. The penetrator had a diameter of
7.70 mm and a length-to-diameter (L/D) ratio of 10. Nominal material properties for these
penetrators are as follows: density - 18.6 g/cm’, hardness - R, 38-44, yield strength - 800 MPa,
ultimate strength - 1,380 MPa, and elongation - 12% (Leonard, Magness, and Kapoor 1992).

3.2 Range Setup. The penetrators were fired from a laboratory gun consisting of a Bofors
40-mm gun breech assembly with a custom-made 40-mm smoothbore barrel. The gun was
positioned approximately 3 m in front of the targets. High-speed (flash) radiography was used to
record and measure projectile pitch and velocity. Two pairs of orthogonal x-ray tubes were
positioned in the vertical and horizontal planes along the shot line (as illustrated in Figure 1).
Propellant weight was adjusted for desired nominal velocity of 1,500 m/s. Projectiles with a

striking total yaw in excess of 2° were considered a "no test," and those data were disregarded.

3.3 Target Construction. Targets were multihit targets nominally 152.2 mm x 304.4 mm

(6 in x 12 in) in size. The first element consisted of a single plate of Ti mechanically clamped to
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the second element. Al second elements were constructed from a stack of 76.2-mm (3 in)-thick
7039, MIL-A-46063 Al plates (two to four plates).

4. Test Results

4.1 Baseline Monolithic Ti Data. Monolithic Ti-6A1-4V penetration data for the depleted
uranium (DU) penetrator against monolithic Ti-6A1-4V are based on nine tests, where impact
velocities ranged from 1,100 m/s to 1,950 m/s (Burkins 1996). Over this range, the data are

linear. Thus, an empirical fit to the data was derived in the following form:

DOP; = 0.0949 ( mm's) 'V, - 56.7 mm, M)
m

where V, is the striking velocity in meters/second, and semi-infinite DOP and the constant are in

millimeters. Residual penetrator lengths were not measured during these tests.




4.2 Baseline Monolithic Al Data. Monolithic 7039 Al data for the DU penetrator against
Monolithic 7039 Al are limited to 17 tests listed in Appendix A, with impact velocities ranging
from 500 m/s to 2,000 m/s (Rupert 1994). Between 1,000 m/s and 2,000 m/s, the data are linear.

An empirical fit to the 11 data points was derived as shown:

DOP,,, = 0.1195 ( m:s ) V, - 6.89 mm, @)

where V, is the striking velocity in meters/second, and the semi-infinite DOP and constant are in
millimeters. In order to correct for variations in the actual striking velocities, all residual
penetration values for metallic bi-element targets were adjusted to a striking velocity of

1,500 m/s by the following correction based on equation (2):

DOP,,, = Measured DOP,, + 0.1195 ( mm-s) (1,500m/s -V.). 3)
m

These corrections were made as to minimize the scatter in the bi-element DOP data resulting

from round-to-round velocity variations.

4.3 Ti/Al Data. Corrected DOP results for Ti/Al bi-element targets are shown in Figure 2
and listed in Appendix B. (A second-order linear regression curve was fitted to the data using
Sigma Plot 5.0 automatic plotting function.) Examination of the regression curve for the ballistic
data and the rule of mixtures shows a similar trend as found in the Ti/RHA data (Rupert and

Grace 1993).

The rule of mixtures for the study takes the following mathematical form:

T .
1- =8, 4

DOP = DOP,,, .
@ DOP,,,




where DOP,,, is the semi-infinite DOP value for the second element, DOP,,, is the semi-infinite
DOP value for the first element, and T, is the applique thickness. Implicit in the rule of

mixtures are the following assumptions:

(1) The performance as measured by depth of penetration of the two target elements is

linearly additive; there are no interactions or synergistic effects associated with the

bi-element target.

(2) The ballistic efficiency of the rear element is constant and independent of the

intermediate penetrator length and velocity at the interface between the two

elements.

(3) Velocity corrections for the bi-element target are equivalent to velocity corrections

for a semi-infinite target of the rear element.

The density effect does not account for the shift of the data up and to the right as in the
previous case. However, unlike the RHA/Ti bi-element targets, there are substantial differences
in strength, density, and sound velocity of the two metals. Primarily as a result of the
aluminum’s lower strength and lower density when compared to Ti and RHA, rigid-body

penetration within the rear element was introduced to the problem.

5. Modeling

To investigate the performance of Ti/Al targets, two different models were used. One treats
target penetration during an initial phase where the rod undergoes erosion, while the other treats
target penetration during a subsequent phase where the rod remains rigid. The terms used to
differentiate the two processes are "eroding-body" penetration and "rigid-body" penetration,
respectively. The quoted qualifiers refer to the state of the penetrator during target penetration.
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Figure 2. Ti/Al Ballistic Results.

To analyze the dynamic effects that develop and the eroding-body penetration, the nonsteady
penetration development of Grace (1993) and its application to bi-element targets by Grace and
Rupert (1993) were utilized. There, long-rod penetrators impacting semi-infinite and bi-element
targets were considered. For the bi-element targets of interest here, the overall target is
semi-infinite and layered as well. The geometry of the bi-element target is shown in Figure 3.
Impact conditions are rod impact velocity v,, initial rod length {, and first-element thickness a,.
The backup target, or second element, is semi-infinite metal. Impact conditions for the second
layer depend upon rod quantities that exist after penetration through the first layer. These are
defined as rod velocity v, and rod length {,. As an extension to previous work (Grace and Rupert
1993), it is assumed that the total penetration Py in the overall target is the sum of that through

each element. This gives

4 b,
P, = - u dl - u dl + P, , 5
N f (V—u)l -C (v-u)2 " Tre )
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Figure 3. Bi-Element Target Geometry.

where [u/(v - u)], and [u/(v - u)], are respective penetration velocities divided by the respective
penetrator material flow rates for the two elements within the eroding-body phase, and Py is the
subsequent rigid-body penetration within the second element. When the penetrator can
overmatch the first element, the first integral on the right-hand side of equation (5) is equal to a,.
However, it is necessary to calculate the penetration through the first element to arrive at
penetrator length ¢, and erosion rates [w/(v - u)], to be used in the second integral. Also, when
rigid-body penetration is involved, the limit {, on the second integral will be determined when
rod erosion stops. This will result from the condition (v - u), = 0, which is given by previous
work (Grace 1993), or by a rod-erosion cutoff velocity to be defined subsequently. The DOP or
residual penetration P, into the backup element is given by the second integral plus penetration

due to the rigid-body contribution, or

&
P,=—f(“)2d1+PRB. 6)

Rod erosion v - u and target erosion u (penetration rate) were given respectively as

pp (Vg - u,)?

28 172
v—u=(vs—uo)[1+ P m(ai” ™
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and

12
u = uo[l + 25, ln(-a-]] ) 3)
2 )

When solving equation (5), penetration into the first element as given by the first integral is
calculated stepwise as if the element were semi-infinite. The process continues up to the point
where the penetration depth reaches a,. This provides the starting conditions v,, u,, and ¢,, for the
second integral. Since equations (7) and (8), as written, apply to the first element, their use for
the second element requires v, u,, and {, to be replaced with v,, u;, and ¢,. The second integral is
calculated stepwise up to the point where the rod stops eroding, which provides penetration depth
P, into the second element during the eroding-body phase, with rod length ¢, and its velocity v, as
starting conditions for the rigid-body penetration portion of the problem.

Penetration into the first element was calculated using previous methods (Grace and
Rupert 1993) that account for the shock transient due to impact at the target front surface and
shock wave reflections, due to density and sound velocity changes across the target material
interface. Treating the first element as semi-infinite produces a penetration process that ignores
possible influences, due to the properties of the backup material. A model was developed to
account for the density change across the target material interface and to explore its ability to
match the experimental observations (Rupert and Grace 1993). This model uses a simplified
version of one-dimensional shock wave propagation to treat the influence on penetration due to
shock reflection from a proximate interface. Figure 3 depicts the penetrator/target and bi-element
target interfaces of interest. An upper limit for the penetration rate is taken to be the particle
velocity u, associated with the shock wave that is generated by penetrator impact with element 1.
Two well-known relations from the theory of shock wave propagation give the pressure p, shock

velocity U, and particle velocity u immediately behind the shock and density p as where cis a

p=pul, U=c+ gy, 9




velocity of sound, and g is a material constant. Applying these two equations to the penetrator/
target and bi-element target interfaces together with appropriate boundary conditions gives the

following expressions used in the current model as

P,/ P

u T oere——
l+pp/p,

s

u, = (p/p)Y,, (10)

s?

under simplifications that the sound speeds of the penetrator and targets are taken to be equal,
and the variation of shock speed with particle velocity has been ignored. In equation (9), p, is the
rod density, u, is the velocity of material reflected from the interface, and u; is the incident
material velocity. Upon impact, the initial penetration rate at the front surface u dropsto a
quasi-steady value u, as penetration proceeds to a depth on the order of a penetrator diameter.
The model permits the penetration rate to be increased or reduced from u,. The change has the

following form:

u, =u, +qu -u), (11)

where u, is the effective penetration rate, q (u, - u,) represents an increment of velocity change,
and u, is the rate given by previous theory (Grace 1993, equation [25]). The form of q is
arbitrary and is chosen for convenience to include influences generated by the transient and bi-

element target interface as

2

DOP,.. +d - a

q-zk| 2 e o | (12)
P, DOP(I)

where d is rod diameter, and DOP,,, is the semi-infinite DOP value for the first-element material.
The last term on the right-hand side of equation (12) allows the correction to decrease as the
reflective wave weakens due to increased distance to the reflective boundary. The ratio of

densities appearing in equation (12) takes into account the strength of the reflected wave as

10




indicated by equation (10), and the sign change indicates the direction of material flow. The
value for k is chosen so that q does not exceed q = 1 and the penetration rate of equation (11)
does not exceed u,. Equations (5), (7), (8), and (11) give the penetration through the first element
and the expected rod length and velocity to be used as starting values in the calculation for DOP
as given by equation (6). The final penetrator length {, required in the integration of equation (6)
is given by the nonsteady penetration theory (Grace 1993).

As indicated, the nonsteady penetration development (Grace 1993) provides the needed
parameters at the point where rigid-body penetration begins, but does not account for rigid-body
penetration itself. Thus, beyond the penetration contribution given by the second integral, P,, it
is necessary to calculate Py, separately. For present purposes, Pgg is determined using the
Alekseevshii/Tate penetration algorithm for rigid-body penetration, as presented by Zook, Frank,
and Silsby (1992), and takes the following form:

2
+ kt )
H

2ktpt

In|1 (13)

Ppp =

The Alekseevshii formulation treats k, as a shape factor. Tate takes the value for k, to be 0.5,
corresponding to the value that appears in the Bernoulli equation. The target resistance
pressure H of 2.21 GPa was calculated from Goodier's expanding spherical cavity analysis
(Goodier 1965). Accordingly, the target resistance is as follows:

2Y

g - Zls 2m?
3

+ 2 g, (14)
27

2E
3Y,,

1 +1n

where Y, is the target yield strength, E is Young's modulus, and E, is the slope from the yield
point to the ultimate strength point, assuming a bilinear stress-strain behavior curve. Property

values used in the modeling are given in Table 1.
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In the present calculations, rod erosion was assumed to stop when penetration velocity
reached a critical value. That value, u,, is determined when the pressure on the nose of the
penetrator drops below the stress required for rod erosion. The total stress on the rod, due to its
flow into the target, is the sum of the dynamic pressure due to its velocity plus the strength of the

target, or

(15)

Taking values S, = 0.625 GPa for the model’s target material dynamic strength and
P, = 1.38 GPa for the model’s penetrator dynamic strength gives an erosion cutoff velocity of
743 /s for DU rods into Al targets. Thus, the second integral was solved stepwise until the
penetration velocity was reduced to 743 m/s. This gave rod length ¢,, velocity v,, and penetration
Prg in the Al at the end of the eroding-body penetration phase.

6. Experimental and Model Results

The current work addresses low-density/lower strength target materials of Ti/Al and the
possibility of rigid-body penetration in these targets. The experimental results provided three
observations suggesting that at least some rigid-body penetration was taking place in the Al
backup targets: ‘

(1) The greater DOPs than expected (based on erosion) in the Al suggested that the penetrator
had higher efficiency than it would have had otherwise. This is consistent with rigid-

body penetration.

(2) Within the DOP tests, recovered residual penetrators had lengths of 2.0-2.5 rod
diameters, whereas 1.0-1.5 factors would be expected under eroding-body penetration
only.

12




(3) Most convincingly, experimental data for penetration of DU rods into semi-infinite
aluminum with impact velocities between 500 m/s to 750 m/s exhibited rigid-body
penetration, exclusively. Complete uneroded penetrators were recovered from the Al

targets.

Figure 4 provides DOP data as a function of Ti applique thickness. The data points on the
abscissa and ordinate correspond to semi-infinite targets of penetration by the DU penetrator into
Ti (86.4 mm) and Al (172.4 mm), respectively. Penetration calculations were carried out for
each of the two cited semi-infinite targets. Results indicated that the semi-infinite Ti was
penetrated by eroding-body penetration only because of its higher strength and density as
compared to Al. Using nominal strengths for DU and Ti from Table 1 gave a penetration depth
into semi-infinite Ti of 85.7 mm. On the other hand, penetration into the Al target resulted from
both eroding-body and rigid-body penetration phases. For the Al, the nonsteady theory gave an
eroding-body penetration of 138 mm and a rod length of 16.7 mm at the erosion cutoff velocity
of 743 m/s. These values and equation (13) provided a calculated rigid-body contribution of

36 mm for a total penetration into Al of 174 mm.

For the bi-element targets, calculations indicated that both eroding-body and rigid-body
penetrations were present in the backup Al. Again, 743-m/s erosion cutoff velocity was used.
Calculated values for residual penetrator length (rigid-body length) over the range of Ti
thicknesses were from 18.7 to 15.2 mm, while the experimentally measured average values
varied between 19 and 10 mm. The DOP calculations are presented in Figure 4. The straight
solid line connecting the semi-infinite points (Figure 4, curve 3) represent expected results from
the rule of mixtures equation (4). The first point to note is that the calculated eroding-body phase
(Figure 4, curves 4 and 5) gave DOPs that approach the rule-of-mixture curve for the thicker Ti
appliques. The eroding-body calculations are much further beneath the rule of mixture when
greater amounts of Al are penetrated in the bi-element target with the thinner Ti sections. The
amount of rigid-body penetration is constant and not proportional to the Ti applique thickness as
a result of equation (15). While this proposition would presently be difficult to confirm

experimentally, the constant cutoff velocity assumed combined with the nearly constant residual

13
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Figure 4. Ti/Al Data and Model Results.

penetrator lengths measured support this proposition as a strong possibility. Additional
experimental refinements are being investigated to determine the transition between penetration
modes. As expected, there was a slight downward shift of about 6-9% when the shock wave or
density effect was taken into account (Rupert and Grace 1993; Grace and Rupert 1993). The
upper two curves (Figure 4, curves 1 and 2) represent the total calculated penetration based on
eroding-body and rigid-body contributions. Shock effects were not accounted for in the higher
curve (Figure 4, curve 1), but were taken into account in the lower one (Figure 4, curve 2). In
either case, the rigid-body penetration was about 30% of the total in the backup for thin Ti
appliques. It became the major contribution for thick Ti appliques. For the low-strength Al

targets considered here, it was necessary to account for rigid-body penetration.




7. Summary and Conclusions

The experiments and penetration analysis provided relative contributions of eroding-body and
rigid-body penetration phases. Further, the analysis showed that calculated shock effects in these
particular Ti/Al targets influence penetration by about 6-9%. The amount of rigid-body
penetration in the backup Al target appears to be nearly constant throughout the range of
Ti applique thickness. This accounted for about 30% for thin sections and most of the
penetration where the applique was thick. The remainder or initial penetration into the rear
element was generated during the rod erosion-based phase. Eroding-body penetration in the
backup Al was highest for thin appliques, but contributed little for the thickest ones when the
residual rod velocity at the interface approached the cutoff velocity for the aiuminum. Itis
believed that targets having low strength relative to the penetrator will respond in the same
fashion, generally. Therefore, the present findings should be applicable to a number of

lightweight armor systems, to include composite armor designs.
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Table A-1. Penetration Results for 7039 Al

Striking
Velocity Pitch Yaw DOP
(m/s) (deg) (deg) (mm)
576 1.00U 0.25L 60.9
741 1.00U 025L | 1259 |
807 1.50U 0.50R | 114.4
911 0.50D 0.25R 96.0
1,000 0.50D 0 99.8
1098 | 025U 0 1141 |
1,146 0.50D 0.50L | 125.1
1,184 0 0.50L | 130.8
1,296 1.25D 100R | 1475 |
1,502 0 0.50R | 174.1
1,505 1.00U 0.75R | 176.1
1,511 0 0.50R | 174.8 H
1,513 1.00D 125R | 174.8 ||
1,515 0 1.50R | 176.7 "
1,718 1.75D 0.25L | 197.8
2,000° — — 223.1
L2013 0.25U 0.75L | 230.1

# Estimated velocity from powder curve.
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Appendix B:
Ti/Al Data
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Table B-1. DOP Results for Ti/Al

Applique | Striking Corrected
Thickness | Velocity
(mm) (m/s)
25.5 1,514 1.50D 0 138.8 137.2 II
25.7 1,516 1.50D | 0.50L | 137.6 135.7 H
25.7 1,522 0.25D | 2.25R | 1393 136.7 ||
25.5 1,632 0.50U | 0.75R | 152.6 136.8 "
51.5 1,508 0.75D | 1.00R 86.5 85.6 “
" 51.5 1,511 0.75D | 0.75R 89.0 87.7
II 515 1,499 1.00U 0 89.9 89.9 "
H 77.0 1,524 0 1.00L 43.2 40.3
" 77.0 1,524 0 2.50R 449 42.0
IL 77.0 1,518 1.75D | 1.25R 47.0 44.8
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